feedburner
Enter your email address:

Delivered by FeedBurner
Jan
01

Data Processing in Remote Sensing

Labels:

Generally speaking, remote sensing works on the principle of the inverse problem. While the object or phenomenon of interest (the state) may not be directly measured, there exists some other variable that can be detected and measured (the observation), which may be related to the object of interest through the use of a data-derived computer model. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emission may then be related to the temperature in that region via various thermodynamic relations.

The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions. Spatial resolution refers to the size of a pixel that is recorded in a raster image - typically pixels may correspond to square areas ranging in side length from 1 to 1000 metres. Spectral resolution refers to the number of different frequency bands recorded - usually, this is equivalent to the number of sensors carried by the platform(s). Current Landsat collection is that of seven bands, including several in the infra-red spectrum. The MODIS satellites are the highest resolving at 31 bands. Radiometric resolution refers to the number of different intensities of radiation the sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to 16,384 intensities or "shades" of colour, in each band. The temporal resolution is simply the frequency of flyovers by the satellite or plane, and is only relevant in time-series studies or those requiring an averaged or mosaic image as in deforesting monitoring. This was first used by the intelligence community where repeated coverage revealed changes in infrastructure, the deployment of units or the modification/introduction of equipment . Cloud cover over a given area or object makes it necessary to repeat the collection of said location. Finally, some people also refer to the "economic resolution", that is, the cost-effective way to manage the collection of data.

In order to create sensor-based maps, most remote sensing systems expect to extrapolate sensor data in relation to a reference point including distances between known points on the ground. This depends on the type of sensor used. For example, in conventional photographs, distances are accurate in the center of the image, with the distortion of measurements increasing the farther you get from the center. Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances. The step in which this problem is resolved is called georeferencing, and involves computer-aided matching up of points in the image (typically 30 or more points per image) which is extrapolated with the use of an established benchmark, "warping" the image to produce accurate spatial data. As of the early 1990s, most satellite images are sold fully georeferenced.

In addition, images may need to be radiometrically and atmospherically corrected. Radiometric correction gives a scale to the pixel values, e.g. the monochromatic scale of 0 to 255 will be converted to actual radiance values. Atmospheric correction eliminates atmospheric haze by rescaling each frequency band so that its minimum value (usually realised in water bodies) corresponds to a pixel value of 0. The digitizing of data also make possible to manipulate the data by changing gray-scale values.

Interpretation is the critical process of making sense of the data. The first application was that of aerial photographic collection which used the following process; spatial measurement through the use of a light table in both conventional single or stereographic coverage, added skills such as the use of photogrammetry, the use of photomosaics, repeat coverage, Making use of objects' known dimensions in order to detect modifications. Image Analysis is the recently developed automated computer-aided application which is in increasing use.

Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scale.

Old data from remote sensing is often valuable because it may provide the only long-term data for a large extent of geography. At the same time, the data is often complex to interpret, and bulky to store. Modern systems tend to store the data digitally, often with lossless compression. The difficulty with this approach is that the data is fragile, the format may be archaic, and the data may be easy to falsify. One of the best systems for archiving data series is as computer-generated machine-readable ultrafiche, usually in typefonts such as OCR-B, or as digitized half-tone images. Ultrafiches survive well in standard libraries, with lifetimes of several centuries. They can be created, copied, filed and retrieved by automated systems. They are about as compact as archival magnetic media, and yet can be read by human beings with minimal, standardized equipment.

0 comments:

Post a Comment